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Abstract—In this paper, the design and fabrication of silicon- 10° P A I D R R SO S
based optical waveguides are revisited. The goal is to develop a 10* r ".‘ .!
novel design and deposition process to minimize leakage losses. In- B ", 3
terface roughness and SiN,4 stoichiometry are examined. The op- 10 f '-._ L
tical loss is measured and contributions from scattering and ab- = 10°F s, !
sorption are determined. g 10k "._ 3
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ILICON opto-electronics have attracted a great deal of 10° f "-_. 1
interest in recent years [1]. The motivation for fabricating 10* F '-._ 3
optical devices on silicon substrates is mainly due to the mature P ] o ) . '-..1:
silicon processing technology, with availability of low-cost 10,6 0.2 0.4 0.6 0.8 1.0 1.2
high-purity wafers and, mostly important, the possibility of Buffer Thickness(um)

integrating these optical devices with microelectronic and/or
micromechanical elements. Compared to purely electrorfig. 1. Leakage loss as a function of the Siiffer thickness.
solutions, silicon opto-electronics technology offers several

advantages, including robustness to hazardous environm(;gg3

immunity to electromagnetic interference, compactness, hced chemical vapor deposition (PECVD) technique [6],

Ilggt_lyvelggt. d ootical devi h b tabricated vlihich allows, if necessary, the deposition of an Siuffer
f ricon- as_el optica zv'cis :ve een 1a nc:::e on A%ver with thickness well above Am. Characterization results
erent material systems [2]-[4]. However, in each case, t e presented and interface roughness agid Sétoichiometry

optical waveguide structures present a lower refractive indg%e examined. The optical loss is measured and contributions
cladding layer, usually Si§) on top of the higher index silicon rom scattering and absorption are determined
substrate. Thus, care must be taken in order to control tfhe '

power leakage to the substrate, which can cause a severe optical
power penalty on the propagating mode.
Usually, this leakage control is performed by making the  |eakage Evaluation

lower SiG, cladding thick enough to act as an optical buffer. . S . .
Nevertheless, thick silicon oxide films are difficult to obtain When a low index waveguide is fabricated on top of a higher

because high stress will promote film cracking and pilling [5] Index substrate, it will face a leakage loss problem. Therefore, if

In the following sections, we will present the fabricatio low-loss waveguides are desired, it is of paramount importance

S e . . . "o reduce this leakage effect. The different ways of reducing op-
process for our Si6JSisN./SIO, optical waveguides, Leakageﬂcal power leakage are: 1) to increase the buffer layer thickness,

losses are kept under control by the use of a careful desigh . . . i
P y |ge increase the thickness of the layer separating the waveguide
core layer from the substrate and 2) to increase the refractive
Manuscript received August 1, 2001; revised November 11, 2001. This watkdex difference between guiding and cladding Iayers.
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Fig. 2. Schematic waveguide structures. Single or multimode characteristics 10 3

resulted from the distinct lateral field confinement characteristics.
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buffer layer thickness of only 1.0m can effectively eliminate
20 (degrees)

the leakage loss problem.
. . Fig. 3. Measured and modeled reflectivity curvésl (X R) of the LPCVD
B. Fabricated Waveguides silicon—nitride layer deposited over silicon—oxide buffer layer.

The fabricated waveguide structures are shown schematica Energy (MeV)
in Fig. 2. The layer sequence starts with the dry thermal de ¢ —— %3 10 13
position of 1xm-thick silicon—oxide buffer layer on top of a
3-in-diameter p-typ€100); 5-15£2-cm silicon substrate, which
was cleaned using a standard rapid thermal annealing (RT; 40
treatment and subsequently washed in an HF solution to ng
move the native oxide. Over the buffer layer, a st0|ch|ometru>~ 30
0.144:m-thick silicon—nitride thin film is deposited by the use §
of low-pressure chemical vapor deposition (LPCVD). Next, the'g
channel and rib waveguides are defined by reactive ion etchir E 20
(RIE) and buffered oxide etchant (BOE) respectively. Finally, ¢ 2
0.2-um tetraethylorthosilicate plasma-enhanced chemical vapt  ,
deposition (TEOS PECVD) Sidayer [6] is deposited as upper
cladding of the optical devices.

It is worth mentioning that this PECVD process, when 0
combined with a RTA treatment, has already allowed us to sut 100 200 300 Chi?nel 300 600 700
cessfully obtain silicon—oxide layers up tg4n thick [6]. The
choice of silicon nitride as the guiding layer of the structuresg. 4. RBS spectrum of silicon nitride over the silicon substrate.
described in this paper made it possible to keep the thickness ~
of the buffer SiQ layer around %:m without significant power
leakage and, as a consequence, to use a simpler dry thermal
growth process for the deposition of the lower waveguide
cladding. However, in several instances where the refractive
index contrast between the core and cladding is not so high, a
PECVD process like ours will be extremely useful for buffer
layer deposition.
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I1l. EXPERIMENTAL CHARACTERIZATION

In order to assess film quality, the Si3izN, interface
roughness was measured by a grazing incidence X-ray reflec-
tometry (GIXR) technique [8]. Fig. 3 shows the fitting of the
GIXR data, yielding an rms roughness value of 0.35 nm. Next,
the stoichiometry of the silicon—nitride core was determinegg. 5. SEM photograph of a silicon—nitride channel waveguide over the
by fitting the Rutherford backscattering spectrometry (RBS icon—oxide buffer. This photograph was taken before the deposition of the

per cladding layer.
spectrum with the RUMP simulator [9], yielding, as indicate
in Fig. 4, the stoichiometric N/Si ratio of 4/3. Finally, Fig. 5 Refractive index measurements of the fabricated films were
shows the scanning electron microscopy (SEM) photograparried out by ellipsometry at 632.8 nm. The LPCVDQ IS
of the defined channel waveguide before the deposition of theCVD, thermal Si@, and PECVD SiQ films showed refrac-
upper cladding layer, while Fig. 6 depicts the atomic forcive index of 2.04, 1.46, and 1.44, respectively.
microscopy (AFM) picture of a silicon—nitride rib, with width Modal characteristics of the fabricated waveguides were ini-
of 4 um and a height of 1.8 nm. tially evaluated by a numerical extension of the effective index
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Fig. 7. Experimental arrangement.
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Fig. 6. AFM picture of a silicon—nitride rib waveguide over the silicon—-oxide
buffer. In this picture, the rib width and height arg#h and 1.8 nm, respectively.
The AFM procedure was carried out before the deposition of the upper cladding
layer.

10

method [7] and later verified by the projection of the near field
of the guided modes at the end of the waveguide. Despite the
0.14+4:m core thickness, the high-index contrast of the microm-
eter-wide channel waveguide produces a multimode structure
in the lateral direction. On the other hand, careful control of the

1

Scattering Loss (dB/cm)

1 M 1 L i i i [ i

etching depth defining the rib height induces a much smaller ef- 01 3 4 S s
fective index contrast and allows the fabrication of single-mode Channel Width (pm)
rib waveguides.

Optical-loss measurements were carried out by butt coupli
the light from an He—Ne laser into thes8i, films. Assuming
that the intensity of scattered light reaching the top surface of
the waveguide is directly proportional to the guided optical
power [10], a surface scanning was performed along the optical
channel by using a microscope objective (40X) coupled to a
p-i-n photodetector. A photograph of the experimental arrange-
ment is shown in Fig. 7. Although the use of the 632.8-nm
wavelength was dictated mainly by characterization purposes, it
is important to note that some applications, such as holographic
memories for optical storage, justify the use of wavelengths in
the visible range.

An important loss mechanism in integrated optical wavegig- 9. Schematic outcoupling waveguide hologram.
uides is the scattering loss produced at the device interfaces. In

planar Wav_eguides, _these_ loss contributi(_)ns come exglus_ivaereﬁZ is the longitudinal propagation constaatis the wall

from the imperfections introduced during the f_abr'cat'oPoughnessW is the channel widthp is the decay constant in
process, and are normally small. Channel waveguides, on {j& ¢|adding, and is the propagation angle of the guided light.
other hand, also exhibit a significant amount of loss on the 5 omparison between the experimental results obtained by
sidewalls of the guide due to the etching process. Dependifgng the procedure described in the previous section and the
on t.he wall roughness, the losses can be prohibitively larggeqretical values predicted by the above expression is given
Typical values for_ the roughness of t_he walls may range frofg Fig. 8. The close match observed strongly indicates that the
30 to 50 nm. In this study, the scattering loss was calculatedd'aps[ica| power loss in the waveguide is fundamentally caused

follows [11]: by surface roughness. Thus, the power leakage to the substrate
seems to have been effectively suppressed, as desired. Also, the

ﬁlg 8. Scattering loss as a function of the channel width.

cos® (6) best fitting for the experimental results was obtained for a rough-
—4(8 )2 sin (#) B nesss of 35 nm, in the range of the values previously reported
@ =20 W 2 in the literature [11]. Finally, it is worth mentioning that, as the

p channel width increases, the experimental value for the optical
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loss should reach a plateau dominated by the intrinsic matgto] S. I. Najafi, Introduction to Glass Integrated Optics Norwood, MA:
rial absorption. Fig. 8 suggests that, in our case, this plateau js  Artech House, 1992. , o
d 0.1 dB/ h dicted L. f h .__|11] R. J. Deri, E. Kapon, and L. M. Schiavone, “Scattering in low-loss
around 0. cm, the predicted sensitivity of our characteriza=™" g;as/GaAlAs rib waveguides Appl. Phys. Lett.vol. 51, no. 11, pp.
tion setup. 789-791, Sept. 1987.
Regarding the rib waveguides, our experimental results ar@2l M. Li. J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhara, "Off-
USi Th d quality of the lateral etchin plane computer-generated waveguide hologrdEEE J. Select. Topics
not yet conclusive. The very goodq y ortl NG Quantum Electron.ol. 2, pp. 226-235, June 1996.
as well as the reduced sidewall scattering yielded by the field
confinement below the rib produced losses that seem to be

below the present measurement capability of our experimental
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suppressed by careful design and fabrication procedure. Optigadity of Sao Paulo, S50 Paulo SP, Brazil.

losses have been essentially determined by scattering caused

by waveguide wall roughness and the measurement limit

of 0.1 dB/cm allowed by our experimental setup has been
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Fig. 9, where the hologram is etched on the waveguide surface
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